|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of Distribution in edu.uah.math.experiments |
---|
Fields in edu.uah.math.experiments declared as Distribution | |
---|---|
protected Distribution |
SamplingDistributionExperiment.dist
|
Uses of Distribution in edu.ucla.stat.SOCR.analyses.util |
---|
Methods in edu.ucla.stat.SOCR.analyses.util with parameters of type Distribution | |
---|---|
void |
ConfidenceControlPanel.makeObservable(Distribution dist)
|
Uses of Distribution in edu.ucla.stat.SOCR.core |
---|
Fields in edu.ucla.stat.SOCR.core declared as Distribution | |
---|---|
protected Distribution |
SOCRDistributions.dist
|
protected Distribution |
SOCRDistributionFunctors.dist
|
protected Distribution |
GraphPanels.dist
|
Methods in edu.ucla.stat.SOCR.core that return Distribution | |
---|---|
static Distribution |
Distribution.getInstance(java.lang.String classname)
|
Methods in edu.ucla.stat.SOCR.core with parameters of type Distribution | |
---|---|
void |
PGFGraphPanel.setDistribution(Distribution d)
|
void |
MGFGraphPanel.setDistribution(Distribution d)
|
void |
GraphPanels.setDistribution(Distribution d)
|
void |
GraphPanel.setDistribution(Distribution d)
|
void |
DistributionGraphPanel.setDistribution(Distribution d)
|
Uses of Distribution in edu.ucla.stat.SOCR.distributions |
---|
Subclasses of Distribution in edu.ucla.stat.SOCR.distributions | |
---|---|
class |
AndersonDarlingDistribution
This class defines the Anderson-Darling distribution with a specifed parameter n>=1. |
class |
ArcSineDistribution
This class models the Arc-Sine distribution on a specified interval. |
class |
BenfordDistribution
This class models the Benford distribution with parameters m (population size), n (sample size), and r (number of type 1 objects). |
class |
BernoulliDistribution
The Bernoulli distribution with parameter p http://mathworld.wolfram.com/BernoulliDistribution.html . |
class |
BetaBinomialDistribution
The binomial distribution with specified parameters: the number of trials (n) and the probability of success (p) http://mathworld.wolfram.com/BetaBinomialDistribution.html . |
class |
BetaDistribution
A Java implmentation of the beta distribution with specified left(alpha) and right(beta) parameters http://mathworld.wolfram.com/BetaDistribution.html . |
class |
BetaGeneralDistribution
A Java implmentation of the (General) Beta Distribution with specified: left(alpha) and right(beta) parameters AND LIMITS A and B. |
class |
BinomialDistribution
The binomial distribution with specified parameters: the number of trials (n) and the probability of success (p) http://mathworld.wolfram.com/BinomialDistribution.html . |
class |
BinomialRandomNDistribution
The binomial distribution with a random number of trials |
class |
BirthdayDistribution
This class models the distribution of the number of distinct sample values when a sample of a specified size is chosen with replacement from a finite population of a specified size. |
class |
CauchyDistribution
This class models the Cauchy distribution |
class |
ChiDistribution
This class defines the Chi distribution with a specifed degrees of freedom. |
class |
ChiSquareDistribution
This class defines the chi-square distribution with a specifed degrees of freedom. |
class |
CircleDistribution
This class models the Circle distribution with parameter a (radius). |
class |
ContinuousUniformDistribution
This class models the uniform distribution on a specified interval. |
class |
Convolution
This class creates the n-fold convolution of a given distribution |
class |
CouponDistribution
This class models the distribution of the sample size needed to get a specified number of distinct sample values when sampling with replacement from a finite population of a specified size: http://www.math.uah.edu/stat/urn/Coupon.xhtml |
class |
DieDistribution
Distribution for a standard 6-sided die |
class |
DiscreteArcsineDistribution
This class models the discrete ArcSine distribution that governs the last zero in a symmetric random walk on an interval. |
class |
DiscreteUniformDistribution
The discrete uniform distribution on a finite set. |
class |
ErlangDistribution
A Java implmentation of the Erlang distribution with specified Scale (scale) and shape (shape) parameters http://mathworld.wolfram.com/ErlangDistribution.html . |
class |
ErrorDistribution
A Java implementation of the Error distribution with specified Location, Scale and Shape parameters http://en.wikipedia.org/wiki/Exponential_power_distribution. |
class |
ExponentialDistribution
This class defines the (general) Exponential distribution with rate parameter r and shift parameter s. |
class |
FiniteDistribution
A basic discrete distribution on a finite set of points, with specified probabilities |
class |
FiniteOrderStatisticDistribution
This class models the distribution of the k'th order statistic for a sample of size n chosen without replacement from {1, 2, ..., N} . |
class |
FisherDistribution
This class models the Fisher F distribution with a spcified number of degrees of freedom in the numerator and denominator. |
class |
FisherTippettDistribution
A Java implmentation of the FisherTippettdistribution with specified alpha & beta parameters http://mathworld.wolfram.com/FisherTippettDistribution.html . |
class |
GammaDistribution
Gamma distribution with a specified shape parameter and scale parameter. |
class |
GeneralCauchyDistribution
A Java implmentation of the General Cauchy distribution with specified alpha & beta parameters. |
class |
GeneralizedExtremeValueDistribution
This class models the Generalized-Extreme-Value (GEV) Distribution with specified 3 parameters (location, scale, shape): The generalized extreme value distribution (GEV) is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, FrEchet and Weibull families also known as type I, II and III extreme value distributions. |
class |
GeometricDistribution
The geometric distribution with parameter p. |
class |
GilbratsDistribution
This class models the Gilbrat's distribution: A continuous distribution in which the logarithm of a variable x has a Standard Normal distribution. |
class |
GompertzDistribution
Gompertz distribution with a specified shape parameter and scale parameter. |
class |
GumbelDistribution
A Java implmentation of the Gumbel distribution with specified alpha & beta parameters http://mathworld.wolfram.com/GumbelDistribution.html . |
class |
HalfNormalDistribution
This class models the Half-Normal distribution with specified starting and SD parameters. |
class |
HyperbolicSecantDistribution
This class encapsulates the Hyperbolic-Secant distribution -- no parameters. |
class |
HypergeometricDistribution
This class models the HyperGeometric distribution with parameters m (population size), n (sample size), and r (number of type 1 objects). |
class |
InverseGammaDistribution
Gamma distribution with a specified shape parameter and scale parameter. |
class |
InverseGaussianDistribution
This class encapsulates the normal distribution with specified (mean, SD) parameters. |
class |
JohnsonSBDistribution
This class models the Johnson SB (Special Bounded) distribution with specified first 4 parameters (mean, SD, skewness, kurtosis): The Johnson family of distributions (N.L. |
class |
JohnsonSUDistribution
This class models the Johnson SU (Special Unbounded) distribution with specified first 4 parameters (mean, SD, skewness, kurtosis): The Johnson family of distributions (N.L. |
class |
KolmogorovDistribution
This class defines the Kolmogorov distribution with a specifed parameter n>=1. |
class |
LaplaceDistribution
This class defines the Laplace distribution with parameters mu & beta. |
class |
LocationScaleDistribution
This class applies a location-scale tranformation to a given distribution. |
class |
LogarithmicSeriesDistribution
A Java implmentation of the LogarithmicSeries distribution with specified shape (shape) parameters http://en.wikipedia.org/wiki/Logarithmic_distribution . |
class |
LogisticDistribution
This class models the logistic distribution |
class |
LogisticExponentialDistribution
This class models the LogisticExponential distribution http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/lexpdf.htm |
class |
LogNormalDistribution
This class models the lognormal distribution with specified (mean & SD) parameters. |
class |
LomaxDistribution
This class models the Lomax distribution (Pareto-distribution of hte second-kind) with a specified parameters (alpha=shape1; gamma=shape2). |
class |
MatchDistribution
The distribution of the number of matches in a random permutation |
class |
MaxwellDistribution
This class models the Maxwell distribution with parameter a. |
class |
MinimaxDistribution
A Java implmentation of the Minimax distribution with specified left(alpha) and right(Minimax) parameters http://mathworld.wolfram.com/topics/ContinuousDistributions.html . |
class |
MixtureDistribution
The Mixture distribution with parameter-vector p=(p1, p2, ..., pn) http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_2D_PointSegmentation_EM_Mixture is the (linear) mixure of an array of distributions according to the mixing parameters. |
class |
MultiNomialDistribution
The Multinomial distribution with parameter-vector (k,p), where n=number of trials and event-probabilities p=(p1, p2, ..., pn), with sum(p_k)=1 and p_k>=0, 1<=k<=n. |
class |
MuthDistribution
A Java implmentation of the Muth distribution with specified left(alpha) and right(Muth) parameters http://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/mutpdf.htm . |
class |
NegativeBinomialDistribution
This class models the negative binomial distribution with specified successes parameter and probability parameter. |
class |
NegativeHypergeometricDistribution
This class models the NegativeHypergeometric distribution with parameters B (population size), b (sample size), and w (number of special-type 1 objects). |
class |
NegativeMultiNomialDistribution
The Negative-Multinomial distribution with parameter-vector (x_o,p), where gamma = x_o>=0, and p=(p_1,0, p_r). |
class |
NonCentralChiSquareDistribution
This class encapsulates the Non-Central Chi-Square distribution with specified: k > 0\, degrees of freedom, and \lambda > 0, non-centrality parameters parameters. |
class |
NormalDistribution
This class encapsulates the normal distribution with specified (mean, SD) parameters. |
class |
NormalTruncatedDistribution
This class encapsulates the Truncated Normal distribution with specified parameters: (mean, SD, leftSupportLimit, rightSupportLimit) http://en.wikipedia.org/wiki/Truncated_normal_distribution . |
class |
OrderStatisticDistribution
The distribution of the order statistic of a specified order from a random sample of a specified size from a specified sampling distribution |
class |
ParetoDistribution
This class models the Pareto distribution with a specified parameters (alpha=power; theta=LeftStart). |
class |
PointMassDistribution
Point mass at x0. |
class |
PoissonDistribution
A Java implementation of the Poisson distribution with specified Shift and Mean parameters http://en.wikipedia.org/wiki/Poisson_distribution. |
class |
PokerDiceDistribution
|
class |
PowerFunctionDistribution
A Java implementation of the PowerFunction distribution with specified Location, Scale and Shape parameters http://www.mathwave.com/articles/power_function_distribution.html. |
class |
RayleighDistribution
A Java implmentation of the Rayleigh distribution with specified alpha & beta parameters http://mathworld.wolfram.com/RayleighDistribution.html |
class |
RiceDistribution
This class models the Rice (Rician) distribution. |
class |
StudentDistribution
This class models the Student T distribution with a specifed degrees of freedom parameter. |
class |
TriangleDistribution
This class models the Triangular distribution on a specified interval. |
class |
TwoSidedPowerDistribution
A Java implementation of the (Two-Sided POwer (TSP) Distribution with specified: left, right, mean and power parameters http://www.springerlink.com/content/u71g0104356x70u1/ . |
class |
UQuadraticDistribution
This class models the Quadratic U distribution on a specified interval. |
class |
VonMisesDistribution
This class models the Von-Mises (Circular Gaussian) distribution on [-Pi; Pi]. |
class |
WalkMaxDistribution
This class models the distribution of the maximum value of a symmetric random walk on the interval [0, n]. |
class |
WalkPositionDistribution
|
class |
WeibullDistribution
This class models the Weibull distribution with specified shape and scale parameters. |
class |
ZipfMandelbrotDistribution
This class models the Zipf-Mandelbrot distribution with parameters N be the number of elements; k be their rank (the value of the random-variable!); w be the value of the power-exponent characterizing the distribution; q be the (rank-)shift [0, \infty) http://en.wikipedia.org/wiki/Zipf-Mandelbrot_law . |
Methods in edu.ucla.stat.SOCR.distributions that return Distribution | |
---|---|
Distribution |
RandomVariable.getDistribution()
Get the probability distribution |
Distribution |
Convolution.getDistribution()
This method returns the distribution. |
Distribution[] |
MixtureDistribution.getDistributions()
This method returns the array of distributions. |
Distribution |
MixtureDistribution.getDistributions(int i)
This method returns a particular distribution. |
Methods in edu.ucla.stat.SOCR.distributions with parameters of type Distribution | |
---|---|
void |
RandomVariable.setDistribution(Distribution d)
Assign the probability distribution and create a corresponding data distribution |
void |
Convolution.setDistribution(Distribution d)
This method sets the distribution. |
void |
MixtureDistribution.setDistributions(Distribution[] d)
This method sets the distributions. |
void |
MixtureDistribution.setDistributions(int i,
Distribution d)
This method sets a particular distribution. |
void |
MixtureDistribution.setParameters(Distribution[] d,
double[] p)
This method sets up the domain of the general mixture distributions in terms of the distributions being mixed. |
void |
MixtureDistribution.setParameters(Distribution d0,
Distribution d1,
double a)
This method sets up the domain of for the mixture of two distributions. |
void |
BinomialRandomNDistribution.setParameters(Distribution d,
double p)
Set the parameters: the distribution for the number of trials and the probability of success |
void |
LocationScaleDistribution.setParameters(Distribution d,
double a,
double b)
This method sets the parameters: the distribution and the location and scale parameters |
void |
Convolution.setParameters(Distribution d,
int n)
This method sets the parameters: the distribution and convolution power. |
void |
OrderStatisticDistribution.setParameters(Distribution d,
int n,
int k)
Set the parameters: the sampling distribution, sample size, and order |
Constructors in edu.ucla.stat.SOCR.distributions with parameters of type Distribution | |
---|---|
BinomialRandomNDistribution(Distribution d,
double p)
This general constructor creates a new randomized binomial distribution with a specified probability of success and a specified distribution for the number of trials |
|
Convolution(Distribution d,
int n)
This general constructor: creates a new convolution distribution corresponding to a specified distribution and convolution power |
|
LocationScaleDistribution(Distribution d,
double a,
double b)
This general constructor creates a new location-scale transformation on a given distribuiton with given location and scale parameters |
|
MixtureDistribution(Distribution[] d,
double[] p)
This general constructor creates the mixture of a given array of distributitons using a given array of probabilities as the mixing parameters. |
|
MixtureDistribution(Distribution d0,
Distribution d1)
This special constructor creates the mixture of two distributions with equal mixing probabilities |
|
MixtureDistribution(Distribution d0,
Distribution d1,
double a)
This special constructor creates the mixture of two distributions using a specified number and its complement as the mixing probabilities. |
|
OrderStatisticDistribution(Distribution d,
int n,
int k)
General constructor: creates a new order statistic distribution corresponding to a specified sampling distribution, sample size, and order |
|
RandomVariable(Distribution d)
Special constructor: create a new random variable with a specified probability distribution and the name X |
|
RandomVariable(Distribution d,
java.lang.String n)
General constructor: create a new random variable with a specified probability distribution and name |
Uses of Distribution in edu.ucla.stat.SOCR.experiments.util |
---|
Fields in edu.ucla.stat.SOCR.experiments.util declared as Distribution | |
---|---|
protected Distribution |
ConfidenceCanvasGeneralBase.chosenDistribution
|
Methods in edu.ucla.stat.SOCR.experiments.util that return Distribution | |
---|---|
Distribution |
ConfidenceControlPanelGeneral.getDistribution()
|
Methods in edu.ucla.stat.SOCR.experiments.util with parameters of type Distribution | |
---|---|
void |
ConfidenceCanvasGeneralBase.clear(int n,
int nTrials,
Distribution dist)
clear clears canvas and resets parameters |
void |
ConfidenceCanvasGeneral.clear(int n,
int nTrials,
Distribution dist)
|
void |
SimulationResampleInferencePanel.makeObservable(Distribution dist)
|
void |
ConfidenceControlPanelGeneral.makeObservable(Distribution dist)
|
void |
ConfidenceCanvasGeneralBase.setDistribution(Distribution dist)
|
void |
ConfidenceCanvasGeneral.setDistribution(Distribution dist)
|
void |
IntervalType.updateIntervalType(Distribution distribution,
int nTrials,
int sampleSize,
int cvIndex)
|
Uses of Distribution in edu.ucla.stat.SOCR.util |
---|
Methods in edu.ucla.stat.SOCR.util that return Distribution | |
---|---|
Distribution |
QuantileGraph.getDistribution()
This method returns the distribution. |
Methods in edu.ucla.stat.SOCR.util with parameters of type Distribution | |
---|---|
void |
QuantileGraph.setDistribution(Distribution d)
This method sets the distribution. |
Constructors in edu.ucla.stat.SOCR.util with parameters of type Distribution | |
---|---|
QuantileGraph(Distribution distribution)
This special constructor creates a new getQuantile graph with a specified distribution and the median (quanitle of order 0.5). |
|
QuantileGraph(Distribution distribution,
double getQuantile)
This general constructor creates a new getQuantile graph with a specified distribution and getQuantile. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |